
MPI and Hybrid Programming
Models

William Gropp
www.cs.illinois.edu/~wgropp

2

What is a Hybrid Model?

•  Combination of several parallel
programming models in the same
program
♦ May be mixed in the same source
♦ May be combinations of components or

routines, each of which is in a single parallel
programming model

•  MPI + Threads or MPI + OpenMP is the
most familiar hybrid model (that
involves MPI)
♦ There are other interesting choices for

which we should prepare

3

Why a Hybrid Model?

•  Note that in some ways MPI is already a hybrid
programming model (MPI + C; MPI + Fortran)
♦  Adding a third programming model is not a major change…

•  Also note that many applications are multilingual, built
from pieces in C, C++, Python, Matlab, …
♦  Developers use the best tool for each part of their program

•  Scale of machines to come encourage the use of
different programming models to address issues such as
♦  Declining memory per core
♦  Multiple threads/core
♦  Load balance
♦  Algorithmic issues

4

MPI and Threads

•  MPI describes parallelism between processes
(with separate address spaces)

•  Thread parallelism provides a shared-memory
model within a process

•  OpenMP and Pthreads are common models
♦  OpenMP provides convenient features for loop-level

parallelism. Threads are created and managed by
the compiler, based on user directives.

♦  Pthreads provide more complex and dynamic
approaches. Threads are created and managed
explicitly by the user.

5

Programming for Multicore

•  Almost all chips are multicore these days
•  Today’s clusters often comprise multiple CPUs per node

sharing memory, and the nodes themselves are
connected by a network

•  Common options for programming such clusters
♦  All MPI

•  Use MPI to communicate between processes both within a
node and across nodes

•  MPI implementation internally uses shared memory to
communicate within a node

♦  MPI + OpenMP (or MPI + OpenACC)
•  Use OpenMP within a node and MPI across nodes

♦  MPI + Pthreads
•  Use Pthreads within a node and MPI across nodes

•  The latter two approaches are known as “hybrid
programming”

6

Myths About the MPI + OpenMP
Hybrid Model

1.  Never works
•  Examples from FEM assembly, others show benefit

2.  Always works
•  Examples from NAS, EarthSim, others show MPI

everywhere often as fast (or faster!) as hybrid models
3.  Requires a special thread-safe MPI

•  In many cases does not; in others, requires a level
defined in MPI

4.  Harder to program
•  Harder than what?
•  Really the classic solution to complexity - divide problem

into separate problems
•  10000-fold coarse-grain parallelism + 100-fold fine-grain

parallelism gives 1,000,000-fold total parallelism

7

Special Note
•  Because neither 1 nor 2 are true, and 4 isn't entirely false,

it is important for applications to engineer codes for the
hybrid model. Applications must determine their:
♦  Memory bandwidth requirements
♦  Memory hierarchy requirements
♦  Load Balance

•  Don't confuse problems with getting good performance out
of OpenMP with problems with the Hybrid programming
model

•  See Using OpenMP by Barbara Chapman,
Gabriele Jost and Ruud van der Pas,
Chapters 5 and 6, for programming
OpenMP for performance
♦  See pages 207-211 where they discuss the

hybrid model

8

MPI’s Four Levels of Thread
Safety

•  MPI defines four levels of thread safety. These are in
the form of commitments the application makes to the
MPI implementation.
♦  MPI_THREAD_SINGLE: only one thread exists in the

application
♦  MPI_THREAD_FUNNELED: multithreaded, but only the

main thread makes MPI calls (the one that called MPI_Init
or MPI_Init_thread)

♦  MPI_THREAD_SERIALIZED: multithreaded, but only one
thread at a time makes MPI calls

♦  MPI_THREAD_MULTIPLE: multithreaded and any thread
can make MPI calls at any time (with some restrictions to
avoid races – see next slide)

8

9

Specifying the Level of
Thread Safety

• MPI defines an alternative to
MPI_Init
♦ MPI_Init_thread(argc, argv,

 requested, provided)
• Application indicates what level it needs;

MPI implementation returns the level it
supports

• Many (not all) builds of MPICH
exploit this runtime control
♦ If you don’t need thread safety, there is

little extra cost

10

Specification of
MPI_THREAD_MULTIPLE

•  When multiple threads make MPI calls
concurrently, the outcome will be as if the calls
executed sequentially in some (any) order

•  Blocking MPI calls will block only the calling thread
and will not prevent other threads from running or
executing MPI functions

•  It is the user's responsibility to prevent races when
threads in the same application post conflicting
MPI calls
♦  e.g., accessing an info object from one thread and

freeing it from another thread
•  User must ensure that collective operations on the

same communicator, window, or file handle are
correctly ordered among threads
♦  e.g., cannot call a broadcast on one thread and a

reduce on another thread on the same communicator

10

11

Threads and MPI in MPI-2
(and MPI-3)

•  An implementation is not required to
support levels higher than
MPI_THREAD_SINGLE; that is, an
implementation is not required to be
thread safe

•  A fully thread-safe implementation will
support MPI_THREAD_MULTIPLE

•  A program that calls MPI_Init (instead of
MPI_Init_thread) should assume that
only MPI_THREAD_SINGLE is supported

11

12

The Current Situation

•  All MPI implementations support MPI_THREAD_SINGLE
(duh).

•  They probably support MPI_THREAD_FUNNELED even if
they don’t admit it.
♦  Does require thread-safe malloc
♦  Probably OK in simple OpenMP programs

•  Many (but not all) implementations support
THREAD_MULTIPLE
♦  Hard to implement efficiently though (lock granularity

issue)
•  “Easy” OpenMP programs (loops parallelized with

OpenMP, communication in between loops) only need
FUNNELED
♦  So don’t need “thread-safe” MPI for many hybrid programs
♦  But watch out for Amdahl’s Law!

13

What MPI’s Thread Safety Means in
the Hybrid MPI+OpenMP Context

•  MPI_THREAD_SINGLE
♦  There is no OpenMP multithreading in the program.

•  MPI_THREAD_FUNNELED
♦  All of the MPI calls are made by the master thread.

i.e. all MPI calls are
•  Outside OpenMP parallel regions, or
•  Inside OpenMP master regions, or
•  Guarded by call to MPI_Is_thread_main MPI call.

�  (same thread that called MPI_Init_thread)

•  MPI_THREAD_SERIALIZED
#pragma omp parallel
…
#pragma omp single
{
 …MPI calls allowed here…
}

•  MPI_THREAD_MULTIPLE
♦  Any thread may make an MPI call at any time

14

Some Things to Watch for in
OpenMP

•  Limited thread and no explicit memory affinity control
(but see OpenMP 4.0 and the 4.1 Draft)
♦  “First touch” (have intended “owning” thread perform first

access) provides initial static mapping of memory
•  Next touch (move ownership to most recent thread) could

help
♦  No portable way to reassign memory affinity – reduces the

effectiveness of OpenMP when used to improve load
balancing.

•  Memory model can require explicit “memory flush”
operations
♦  Defaults allow race conditions
♦  Humans notoriously poor at recognizing all races

•  It only takes one mistake to create a hard-to-find bug

15

Some Things to Watch for in
MPI + OpenMP

•  No interface for apportioning resources
between MPI and OpenMP
♦  On an SMP node, how many MPI processes and how

many OpenMP Threads?
•  Note the static nature assumed by this question

♦  Note that having more threads than cores can be
important for hiding latency

•  Requires very lightweight threads

•  Competition for resources
♦  Particularly memory bandwidth and network access
♦  Apportionment of network access between threads

and processes is also a problem, as we’ve already
seen.

16

Where Does the MPI + OpenMP
Hybrid Model Work Well?

• Compute-bound loops
♦ Many operations per memory load

• Fine-grain parallelism
♦ Algorithms that are latency-sensitive

• Load balancing
♦ Similar to fine-grain parallelism; ease of

• Memory bound loops

17

Compute-Bound Loops

• Loops that involve many
operations per load from memory
♦ This can happen in some kinds of

matrix assembly, for example.
♦ “Life” update partially compute bound

(all of those branches)
♦ Jacobi update not compute bound

18

Fine-Grain Parallelism

•  Algorithms that require frequent
exchanges of small amounts of data

•  E.g., in blocked preconditioners,
where fewer, larger blocks, each
managed with OpenMP, as opposed
to more, smaller, single-threaded
blocks in the all-MPI version, gives
you an algorithmic advantage (e.g.,
fewer iterations in a preconditioned
linear solution algorithm).

•  Even if memory bound

19

Load Balancing

•  Where the computational load isn't
exactly the same in all threads/
processes; this can be viewed as a
variation on fine-grained access.

•  OpenMP schedules can handle some of
this
♦  For very fine grain cases, a mix of static and

dynamic scheduling may be more efficient
♦ Current research looking at more elaborate

and efficient schedules for this case

20

Memory-Bound Loops

• Where read data is shared, so that
cache memory can be used more
efficiently.

• Example: Table lookup for
evaluating equations of state
♦ Table can be shared
♦ If table evaluated as necessary,

evaluations can be shared

21

Where is Pure MPI Better?

•  Trying to use OpenMP + MPI on very
regular, memory-bandwidth-bound
computations is likely to lose because of
the better, programmer-enforced
memory locality management in the
pure MPI version.

•  Another reason to use more than one
MPI process - if a single process (or
thread) can't saturate the interconnect -
then use multiple communicating
processes or threads.
♦ Note that threads and processes are not

equal - see next slides

22

Tests with Multiple Threads
versus Processes

22

T

T

T

T

T

T

T

T

P

P

P

P

P

P

P

P

•  Consider these two
cases:
♦  Nodes with 4 cores
♦  1 process with four

threads sends to 1 process
with four threads, each
thread sending, or

♦  4 processes, each with
one thread, sending to a
corresponding thread

•  User expectation is that
the performance is the
same

•  Results are joint work
with Rajeev Thakur
(Argonne)

23

Concurrent Bandwidth Test

Lesson: Its hard to provide full performance from threads

(Recent results on current platforms show similar
behavior)

24

Locality is Critical

•  Placement of processes and threads
is critical for performance
♦ Placement of processes impacts use of

communication links; poor placement
creates more communication

♦ Placement of threads within a process on
cores impacts both memory and
intranode performance
• Threads must bind to preserve cache
•  In multi-chip nodes, some cores closer than

others – same issue as processes
• MPI has limited, but useful, features

for placement

25

Importance of ordering processes/
threads within a multichip node

•  2x4 processes in a mesh
•  How should they be

mapped onto this single
node?

•  Round robin (by chip)?
♦  Labels are coordinates of

process in logical
computational mesh

♦  Results in 3x interchip
communication than the
natural order

♦  Same issue results if there
is 1 process with 4 threads
on each chip, or 1 process
with 8 threads on the node

core core

core core

core core

core core

0,0 2,0

0,1 2,1

1,0 3,0

1,1 3,1

26

Hybrid Model Options: Fine

•  Fine grain model:
♦ Program is single threaded except when

actively using multiple threads, e.g., for
loop processing

♦ Pro:
•  Easily added to existing MPI program

♦ Con:
•  Adds overhead in creating and/or managing

threads
•  Locality and affinity may be an issue (no

guarantees)
•  Amdahl’s Law problem – serial sections limit

speedup

27

Hybrid Model Options:
Coarse

• Coarse grain model
♦ Majority of program runs within “omp

parallel”
♦ Pro:

• Lowers overhead of using threads,
including creation, locality, and affinity

• Promotes a more parallel coding style
♦ Con:

• More complex coding, easier to introduce
race condition errors

28

Challenges for
Programming Models

•  Parallel programming models need to provide ways to
coordinate resource allocation
♦  Numbers of cores/threads
♦  Assignment (affinity) of cores/threads
♦  Intranode memory bandwidth
♦  Internode memory bandwidth

•  They must also provide clean ways to share data
♦  Consistent memory models
♦  Decide whether its best to make it easy and transparent

for the programmer (but slow) or fast but hard (or
impossible, which is often the current state)

•  Remember, parallel programming is about performance
♦  You will always get higher programmer productivity with a

single threaded code

29

Challenges for
Implementations

•  Sharing of communication infrastructure
♦  For example, the Berkeley UPC implementation

makes use of GASNET, an efficient, portable
communication layer

♦  But GASNET does not provide all of the features
required by an efficient, full MPI implementation

♦  Similarly, the communication layer used by MPI
implementations may not provide all of the features
needed by UPC (see �Problems with using MPI 1.1
and 2.0 as compilation targets for parallel language
implementations�, Dan Bonachea, Jason Duell)

•  It is possible to build such infrastuctures
♦  But current examples only address some of the

issues.
♦  Resource allocation and sharing not covered

30

Conclusions

•  Hybrid programming models exploit complementary
strengths
♦  In many cases, can replace OpenMP with OpenACC or

other accelerator programming system
•  Evolutionary Path to Hybrid Models

♦  Short term - better support for resource sharing
•  We need to experiment with specifying additional information,

e.g., through mpiexec
♦  Medium term - better support for interoperating

components
•  We need to ensure that communication infrastructures can

cooperate
•  Consider extensions to make implementations aware that they

are in a hybrid model program
♦  Long term - Generalized model, efficient sharing of

communication and computation infrastructure

